Structural insights into the regulation of sialic acid catabolism by the Vibrio vulnificus transcriptional repressor NanR.
نویسندگان
چکیده
Pathogenic and commensal bacteria that experience limited nutrient availability in their host have evolved sophisticated systems to catabolize the mucin sugar N-acetylneuraminic acid, thereby facilitating their survival and colonization. The correct function of the associated catabolic machinery is particularly crucial for the pathogenesis of enteropathogenic bacteria during infection, although the molecular mechanisms involved with the regulation of the catabolic machinery are unknown. This study reports the complex structure of NanR, a repressor of the N-acetylneuraminate (nan) genes responsible for N-acetylneuraminic acid catabolism, and its regulatory ligand, N-acetylmannosamine 6-phosphate (ManNAc-6P), in the human pathogenic bacterium Vibrio vulnificus. Structural studies combined with electron microscopic, biochemical, and in vivo analysis demonstrated that NanR forms a dimer in which the two monomers create an arched tunnel-like DNA-binding space, which contains positively charged residues that interact with the nan promoter. The interaction between the NanR dimer and DNA is alleviated by the ManNAc-6P-mediated relocation of residues in the ligand-binding domain of NanR, which subsequently relieves the repressive effect of NanR and induces the transcription of the nan genes. Survival studies in which mice were challenged with a ManNAc-6P-binding-defective mutant strain of V. vulnificus demonstrated that this relocation of NanR residues is critical for V. vulnificus pathogenesis. In summary, this study presents a model of the mechanism that regulates sialic acid catabolism via NanR in V. vulnificus.
منابع مشابه
Control of the Escherichia coli sialoregulon by transcriptional repressor NanR.
NanR, one of >8,500 GntR superfamily helix-turn-helix transcriptional regulators, controls expression of the genes required for catabolism of sialic acids in Escherichia coli. It is predicted to do the same in related bacteria harboring orthologs of nanR. The sialic acids are a family of over 40 naturally occurring nine-carbon keto-sugar acids found mainly in the animal lineage, which includes ...
متن کاملRegulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli.
All Escherichia coli strains so far examined possess a chromosomally encoded nanATEK-yhcH operon for the catabolism of sialic acids. These unique nine-carbon sugars are synthesized primarily by higher eukaryotes and can be used as carbon, nitrogen, and energy sources by a variety of microbial pathogens or commensals. The gene nanR, located immediately upstream of the operon, encodes a protein o...
متن کاملCloning and characterization of vuuA, a gene encoding the Vibrio vulnificus ferric vulnibactin receptor.
The ability of Vibrio vulnificus to acquire iron from the host has been shown to correlate with virulence. Many iron transport genes are regulated by iron, and in V. vulnificus, transcriptional regulation by iron depends on the fur gene. The N-terminal amino acid sequence of a 72-kDa iron-regulated outer membrane protein purified from a V. vulnificus fur mutant had 53% homology with the first 1...
متن کاملCloning and characterization of an outer membrane protein of Vibrio vulnificus required for heme utilization: regulation of expression and determination of the gene sequence.
Vibrio vulnificus is a halophilic, marine pathogen that has been associated with septicemia and serious wound infections in patients with iron overload and preexisting liver disease. For V. vulnificus, the ability to acquire iron from the host has been shown to correlate with virulence. V. vulnificus is able to use host iron sources such as hemoglobin and heme. We previously constructed a fur m...
متن کاملSialic acid catabolism in Staphylococcus aureus.
Staphylococcus aureus is a ubiquitous bacterial pathogen that is the causative agent of numerous acute and chronic infections. S. aureus colonizes the anterior nares of a significant portion of the healthy adult population, but the mechanisms of colonization remain incompletely defined. Sialic acid (N-acetylneuraminic acid [Neu5Ac]) is a bioavailable carbon and nitrogen source that is abundant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 30 شماره
صفحات -
تاریخ انتشار 2013